Constant L2

Created Wednesday 05 June 2013

A heat transfer model based on the mean heat transfer coefficient (htc) which is a user-defined parameter

1. Purpose of Model

This model allows a simple and robust definition of the heat transfer coefficient. The model is appropriate when dependencies of the fluid properties and mass flow rate on the heat transfer are negligible or the affected component is not limiting the heat transfer as other components feature a significant lower heat transfer coefficient.

2. Physical Insight

This replaceable model is compatible to models of level of detail L2 according to Brunnemann et al. [1] since no spacial resolution of the heat transfer is assumed.

3. Limits of Validity


4. Interfaces

The model communicates via outer models and records. Thus its expects to have:

It has further a Basics:Interfaces:HeatPort a heat that shall be connected with the applying component model.

5. Nomenclature

6. Governing Equations

The mean temperature difference is defined as follows, based on the user's choice in the boolean parameter temperatureDifference:

Please note that for the choice temperatureDifference="Logarithmic mean" a number of means is applied to make the equation regular also for zero heat flow and reversing heat flows. If an unsupported string for temperatureDifference is provided an assert would raise.

The heat transfer coefficient α equals the user-defined nominal heat transfer coefficient and an also user-defined fouling correction:

7. Remarks for Usage

8. Validation


9. References

[1] Johannes Brunnemann and Friedrich Gottelt, Kai Wellner, Ala Renz, André Thüring, Volker Röder, Christoph Hasenbein, Christian Schulze, Gerhard Schmitz, Jörg Eiden: "Status of ClaRaCCS: Modelling and Simulationof Coal-Fired Power Plants with CO2 capture", 9th Modelica Conference, Munich, Germany, 2012

10. Authorship and Copyright Statement for original (initial) Contribution

Author:
DYNCAP/DYNSTART development team, Copyright 2011 - 2022.
Remarks:
This component was developed during DYNCAP/DYNSTART projects.
Acknowledgements:
ClaRa originated from the collaborative research projects DYNCAP and DYNSTART. Both research projects were supported by the German Federal Ministry for Economic Affairs and Energy (FKZ 03ET2009 and FKZ 03ET7060).
CLA:
The author(s) have agreed to ClaRa CLA, version 1.0. See https://claralib.com/pdf/CLA.pdf
By agreeing to ClaRa CLA, version 1.0 the author has granted the ClaRa development team a permanent right to use and modify his initial contribution as well as to publish it or its modified versions under the 3-clause BSD License.

11. Version History



Backlinks: ClaRa:Components:HeatExchangers:HEXvle2gas L3 1ph BU ntu ClaRa:Components:HeatExchangers:HEXvle2gas L3 1ph BU simple ClaRa:Components:HeatExchangers:HEXvle2gas L3 2ph BU simple ClaRa:Components:HeatExchangers:HEXvle2vle L3 1ph BU ntu ClaRa:Components:HeatExchangers:HEXvle2vle L3 1ph BU simple ClaRa:Components:HeatExchangers:HEXvle2vle L3 2ph BU ntu ClaRa:Components:HeatExchangers:HEXvle2vle L3 2ph BU simple ClaRa:Components:HeatExchangers:HEXvle2vle L3 2ph CH ntu ClaRa:Components:HeatExchangers:HEXvle2vle L3 2ph CH simple ClaRa:Components:HeatExchangers:HEXvle2vle L3 2ph CU ntu ClaRa:Components:HeatExchangers:HEXvle2vle L3 2ph CU simple ClaRa:Components:HeatExchangers:IdealShell L2 ClaRa:Components:HeatExchangers:PlateHEXvle2vle L3 2ph ntu ClaRa:Components:HeatExchangers:TubeBundle L2 ClaRa:Components:Sensors:SensorVLE L3 T ClaRa:Basics:ControlVolumes:FluidVolumes:VolumeVLE L2 ClaRa:Basics:ControlVolumes:GasVolumes:VolumeGas L2 ClaRa:Basics:ControlVolumes:GasVolumes:Volume Gas L2 Chem ClaRa:Basics:ControlVolumes:GasVolumes:Volume Gas L2 advanced ClaRa:Components:FlueGasCleaning:Denitrification:Denitrification L2 ClaRa:Components:FlueGasCleaning:Desulfurization:Desulfurization L2 ideal ClaRa:Components:FlueGasCleaning:E-Filter:E-Filter L2 detailed ClaRa:Components:FlueGasCleaning:E-Filter:E-Filter L2 empirical ClaRa:Components:FlueGasCleaning:E-Filter:E-Filter L2 simple ClaRa:Basics:ControlVolumes:Fundamentals:HeatTransport:VLE HT:NusseltPipe1ph L2